The effects of tumor necrosis factor-alpha on early human hematopoietic progenitor cells treated with 4-hydroperoxycyclophosphamide.
نویسندگان
چکیده
We have previously reported that 20 hours' preincubation of human bone marrow cells with interleukin-1 beta (IL-1) can protect early progenitor cells from 4-hydroperoxycyclophosphamide (4-HC) cytotoxicity. Since tumor necrosis factor-alpha (TNF alpha) shares many of the biologic properties of IL-1, we have compared the protective effects of TNF alpha with IL-1 against 4-HC. Incubation of human bone marrow mononuclear cells or an enriched progenitor population for 20 hours with either TNF alpha or IL-1 resulted in the survival of an increased number of single- and mixed-lineage colonies, including replatable blast cell colonies, while only rare colonies were seen in the control group. Antibodies to TNF alpha completely abolished the protection observed with IL-1, while antibodies to IL-1 alpha and IL-1 beta decreased but did not abolish the protection seen with TNF alpha. Combinations of low doses of TNF alpha and IL-1 showed synergy in their protective effects. Furthermore, no protection was observed by IL-1, IL-1 bone-marrow-conditioned medium (IL-1-BMCM), or TNF alpha for HL-60, K562, KG1, KG1a, and DU.528 leukemic-cell lines or primary acute myelogenous leukemic (AML) blast cells from the lethal effects of 4-HC. In the case of HL-60 and KG1a cell lines, TNF alpha preincubation resulted in increased cytotoxicity. Furthermore, preincubation of a mixture of AML cells and normal bone-marrow cells with IL-1 + TNF alpha before 4-HC resulted in the protection of normal but not leukemic progenitors. These results suggest that TNF alpha is necessary for the protection of normal, early, human hematopoietic progenitors from 4-HC, while IL-1 is not mandatory but will synergize with TNF alpha to offer increased protection. In addition, no protection from 4-HC is observed by TNF alpha, IL-1, or IL-1-BMCM for primary leukemic blast cells or leukemic cell lines.
منابع مشابه
Effects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration
Introduction Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective: We hypothesi...
متن کاملEffect of human amnion-derived multipotent progenitor cells on hematopoietic recovery after total body irradiation in C57BL/6 mice
Background: The hematopoietic system is sensitive to the adverse effects of ionizing radiation. Cellular therapies utilizing mesenchymal stem cells or vascular endothelial cells have been explored as potential countermeasures for radiation hematopoietic injuries. We investigated cells cultured from amnion ...
متن کاملIranian Black Tea and Cowslip Extracts Induce Tumor Necrosis Factor-Alpha Secretion from Mouse Macrophage Cell Culture
Many species of tea (Camellia sinensis) and cowslip (Echium amoenum) are used in Iranian traditional medicine. The aim of this study was to conduct the survey on the ability of Iranian black tea and cowslip extracts on secretion of tumor necrosis factor-alpha (TNF-alpha) by non-infected and infected mouse macrophages. A macrophage infection model with Legionella pneumophila and enzyme linked im...
متن کاملIranian Black Tea and Cowslip Extracts Induce Tumor Necrosis Factor-Alpha Secretion from Mouse Macrophage Cell Culture
Many species of tea (Camellia sinensis) and cowslip (Echium amoenum) are used in Iranian traditional medicine. The aim of this study was to conduct the survey on the ability of Iranian black tea and cowslip extracts on secretion of tumor necrosis factor-alpha (TNF-alpha) by non-infected and infected mouse macrophages. A macrophage infection model with Legionella pneumophila and enzyme linked im...
متن کاملHuman interleukin-4 inhibits proliferation of megakaryocyte progenitor cells in culture.
We studied the effects of recombinant human interleukin-4 (rhIL-4) on megakaryocyte colony formation from enriched hematopoietic progenitors. IL-4 strongly inhibited pure and mixed megakaryocyte colony formation in a dose-dependent manner. Formation of erythroid bursts, eosinophil colonies, and erythrocyte-containing mixed colonies was not affected by the addition of IL-4 as reported previously...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 76 4 شماره
صفحات -
تاریخ انتشار 1990